Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.23.473990

ABSTRACT

Since the SARS-CoV-2 outbreak in 2019, millions of people have been infected with the virus, and due to its high human-to-human transmission rate, there is a need for a vaccine to protect people. Although some vaccines are in use, due to the high mutation rate in the SARS-CoV-2 multiple variants, the current vaccines may not be sufficient to immunize people against new variant threats. One of the emerging variants of concern is B1.1.529 (Omicron), which carries∼30 mutations in the Spike protein of SARS-CoV-2 is predicted to evade antibodies recognition even from vaccinated people. We used a structure-based approach along with an epitope prediction server to develop a Multi-Epitope based Subunit Vaccine (MESV) involving SARS-CoV-2 B1.1.529 variant spike glycoprotein. The predicted epitope with better antigenicity and non-toxicity were used for designing and predicting vaccine construct features and structure models. The MESV construct In-silico cloning in pET28a expression vector predicted the construct to be highly translational. The proposed MESV vaccine construct was also subjected to immune simulation prediction and was found to be highly antigenic and elicit a cell-mediated immune response. The proposed MESV in the present study has the potential to be evaluated further for vaccine production against the newly identified B1.1.529 (Omicron) variant of concern.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.11.455903

ABSTRACT

A recent fatal outbreak of novel coronavirus SARS-CoV-2, identified preliminary as a causative agent for series of unusual pneumonia cases in Wuhan city, China has infected more than 20 million individuals with more than 4 million mortalities. Since, the infection crossed geographical barriers, the WHO permanently named the causing disease as COVID-2019 by declaring it a pandemic situation. SARS-CoV-2 is an enveloped single-stranded RNA virus causing a wide range of pathological conditions from common cold symptoms to pneumonia and fatal severe respiratory syndrome. Genome sequencing of SARS-CoV-2 has revealed 96% identity to the bat coronavirus and 79.6% sequence identity to the previous SARS-CoV. The main protease (known as 3C-like proteinase/ Mpro) plays a vital role during the infection with the processing of replicase polyprotein thus offering an attractive target for therapeutic interventions. SARS-CoV and SARS-CoV-2 Mpro shares 97% sequence identity, with 12 variable residues but none of them present in the catalytic and substrate binding site. With the high level of sequence and structural similarity and absence of any drug/vaccine against SARS-CoV-2, drug repurposing against Mpro is an effective strategy to combat COVID-19. Here, we report a detailed comparison of SARS-CoV-2 Mpro with SARS-CoV Mpro using molecular dynamics simulations to assess the impact of 12 divergent residues on the molecular microenvironment of Mpro. A structural comparison and analysis is made on how these variable residues affects the intra-molecular interactions between key residues in the monomer and biologically active dimer form of Mpro. The present MD simulations study concluded the change in microenvironment of active-site residues at the entrance (T25, T26, M49 and Q189), near the catalytic region (F140, H163, H164, M165 and H172) and other residues in substrate binding site (V35T, N65S, K88R and N180K) due to 12 mutation incorporated in the SARS-CoV-2 Mpro. It is also evident that SARS-CoV-2 dimer is more stable and less flexible state compared to monomer which may be due to these variable residues, mainly F140, E166 and H172 which are involved in dimerization. This also warrants a need for inhibitor design considering the more stable dimer form. The mutation accumulated in SARS-CoV-2 Mpro indirectly reconfigures the key molecular networks around the active site conferring a potential change in SARS-CoV-2, thus posing a challenge in drug repurposing SARS drugs for COVID-19. The new networks and changes in microenvironment identified by our work might guide attempts needed for repurposing and identification of new Mpro inhibitors.


Subject(s)
Coronavirus Infections , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.23.394577

ABSTRACT

IntroductionCOVID-19-related (vs. non-related) articles appear to be more expeditiously processed and published in peer-reviewed journals. We aimed to evaluate: (i) whether COVID-19-related preprints were favoured for publication, (ii) preprinting trends and public discussion of the preprints and (iii) relationship between the publication topic (COVID-19-related or not) and quality issues. MethodsManuscripts deposited at bioRxiv and medRxiv between January 1 and October 21 were assessed for the probability of publishing in peer-reviewed journals, and those published were evaluated for submission-to-acceptance time. The extent of public discussion was assessed based on Altmetric and Disqus data. The Retraction Watch database and PubMed were used to explore the retraction of COVID-19 and non-COVID-19 articles and preprints. ResultsWith adjustment for the preprinting server and number of deposited versions, COVID-19-related preprints were more likely to be published within 120 days since the deposition of the first version (OR=1.99, 95%CI 1.76-2.25) as well as over the entire observed period (OR=1.49, 95%CI 1.36-1.62). Submission-to-acceptance was by 41.69 days (95%CI 46.56-36.80) shorter for COVID-19 articles. Public discussion of preprints was modest and COVID-19 articles were overrepresented in the pool of retracted articles in 2020. ConclusionCurrent data suggest a preference for publication of COVID-19-related preprints over the observed period.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.22.393009

ABSTRACT

Novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has claimed more than 1.5 million lives worldwide and counting. As per the GISAID database, the genomics of SARS-CoV2 is extensively studied with more than 500 genome submissions per day. Out of several hotspot mutations within the SARS-CoV-2 genome, researchers have focused a lot on missense variants but the least work is done on the UTRs. One of the most frequent UTR variants in the SARS-CoV-2 genome is the C241T with a global frequency of more than 0.9. In the present study, the effect of the C241T mutation has been studied with respect to change in RNA structure and its interaction with the host replication factors MADP1 Zinc finger CCHC-type and RNA-binding motif 1 (hnRNP1). The results obtained from molecular docking and molecular dynamics simulation indicated weaker interaction of C241T mutant stem loops with host transcription factor MADP1 indicating reduced replication efficiency. The results are also correlated with increased recovery rates and decreased death rates of global SARS-CoV-2 cases.


Subject(s)
Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL